a'®»

19.-23.10.2010, Rovinj, Croatia

Query Transformations

Joze Senegacnik
Oracle ACE Director
joze.senegacnik@dbprof.com

DbProf.

About the Speaker
JozZze Senegacnik
« Located in Slovenia OakTab net

QD15

hroug

Registered private researcher

First experience with Oracle Version 4 in 1988

21+ years of experience with Oracle RDBMS.

Proud member of the OakTable Network www.oaktable.net
Oracle ACE Director

Co-author of the OakTable book “Expert Oracle Practices” by
Apress (Jan 2010)

VP of Slovenian OUG (SIOUG) board
CISA — Certified IS auditor
Blog about Oracle: hiip://joze-senegacnik.blogspot.com

PPL(A) — private pilot license / night qualified
Blog about flying: http:/jsenegacnik.blogspot.com

Blog about Building Ovens, Baking and Cooking:
http://senegacnik.blogspot.com

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

P

A OoORACLE
ACE Director

ACE

Expert
Oracle Practices

Agenda

DbProf.
com

QD15

hroug

* Introduction
* Query Transformations

e Conclusions

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

DbProf.
com

Cost Based Optimizer Trace (event 10053)

QD15

hroug

The following abbreviations are used in the optimizer trace:

JPPD - join predicate push-down

OJPPD - old-style (non-cost-based) JPPD
FPD - filter push-down

PM - predicate move-around

CVM - complex view merging

SPJ - select-project-join

SJC - set join conversion

SU - subqguery unnesting

OBYE - order by elimination

OST - old style star transformation

ST - new (cbqt) star transformation

CNT - count(col) to count(*) transformation
JE - Join Elimination

JF - join factorization

SLP - select list pruning

DP - distinct placement

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

DbProf.

com
SQL Statement Processing
optimneation |
Execution Plan
Row Source
Generator
@]5 www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 5

hroug

DbProf.
com

Query Optimization

« Query optimization is performed in two phases
1. Logical optimization (query transformation)

2. Physical optimization — finds information

« Possible access method to every table (full scan, index
lookup,...)
« Possible join method for every join (HJ, SM, NL)

« Join order for the query tables (join(join(A,B), C)

%u]g www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 6

Query Optimization

DbProf.
com

Q

s

T4(Q) To(T4(Q))

Query Search Space

Search Space

Plan with

lowest cost

DbProf.
com

Why Query Transformations®?

« The goal of transformation is to enhance the query
performance.

« Transformation generates semantically equivalent form
of statement, which produces the same results, but
significantly differs in performance.

« Transformation rely on algebraic properties that are not
always expressible in SQL, e.g, anti-join and semi-join.

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 8

DbProf.
com

Transformations

« CBO supports different approaches:

— Automatic — which always produce a faster plan

— Heuristic-based
* Prior to 10gR1
« Assumption — produce faster plan most of the time
« User has to set parameters or use hints

— Cost-based
« Since 10gR1
« Transformation does not always produce a faster query

* Query optimizer costs non transformed query and transformed
query and picks the cheapest form

« No need to set parameters or use hints
« Transformation may span more than one query block

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 9

DbProf.
com

QD15

hroug

Query Transformations

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

10

DbProf.
com

QD15

hroug

SU - Subquery Unnesting

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

11

DbProf.
com

SU - subquery unnesting

QD15

hroug

Original may be sub-optimal because of multiple,
redundant re-evaluation of the sub-query

Un-nesting

— sub-query converted into an inline view connected using a join,
then merged into the outer query

— _Ene;bles new access paths, join orders, join methods (anti-/semi-
join

A wide variety of un-nesting

— Any (IN), All (NOT IN), [NOT] EXISTS, correlated, uncorrelated,
aggregated, group by

Some are automatic; what used to be heuristic-based is

cost-based since Oracle10g

Related optimizer hints: UNNEST, NO_UNNEST

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 12

DbProf.
com

SU - unnesting NOT EXISTS

QD15

hroug

SELECT c.cust_id, c.cust_first_name, c.cust_last_name
FROM customers cC
WHERE NOT EXISTS

(SELECT 1

FROM orders o

WHERE o.cust_1d = c.cust_id);

! 1

SELECT c.cust_id, c.cust_first_name, c.cust_last_name
FROM customers c, orders o

WHERE c.cust_id A= o.cust_id:

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 13

DbProf.
com

Execution Plan for NOT EXISTS

SQL> select cust_id,cust_first name,cust_last name
from customers c
where not exists (select 1 from sales s where s.cust_id = c.cust_id);

Id	Operation	Name
0	SELECT STATEMENT	
* 1	HASH JOIN ANTI	
2	TABLE ACCESS FULL	CUSTOMERS
3	PARTITION RANGE ALL	
4	BITMAP CONVERSION TO ROWIDS	
5	BITMAP INDEX FAST FULL SCAN	SALES_CUST_BIX

1 - access("s"."cusTt_1D"="C"."CUST_ID")

Tables are from SH demo schema.

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 14

DbProf.
com

Excerpt from CBO Trace

Cost-B dsS bq er Unnest'ng
L R S N P P PR Pa I S Sar S
ANRARRANR AN AN AN A A A AN A AR AR A A A A AR A A A A AR A A A A A 2N

SU: Unnesting query blocks in query block SEL$1 (#1)

that are valid to unnest.

Subquery Unnesting on query block SEL$1
(#1)SuU: Performing unnesting that does not require costing.
SU: Considering subquery unnest on query block SEL$1 (#1).
SU: Checking validity of unnesting subquery SEL$2 (#2)
SU: Passed validity checks.
SU: Unnesting subquery query block SEL$2

(#2)SU: Transform ALL/NOTEXISTS subquery into a regular
antijoin.

Registered qb: SEL$5DA710D3 0x211bdabO (SUBQUERY UNNEST
SEL$1; SEL$2)

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 15

DbProf.
com

SU - unnesting EXISTS

SELECT c.cust_id, c.cust_first_name, c.cust_last_name
FROM customers c
WHERE EXISTS

(SELECT 1

FROM orders o

WHERE o.cust_1d = c.cust_id);

! 1

SELECT c.cust_id, c.cust_first_name, c.cust_last_name
FROM customers c, orders o

WHERE c.cust_id S= o.cust_id;

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 16

DbProf.
com

Execution Plan for EXISTS

SQL> select cust_id,cust_first name,cust_last name
from customers ¢
where exists (select 1 from sales s where s.cust_id = c.cust_id);

Id	Operation	Name
O	SELECT STATEMENT	
* 1	HASH JOIN SEMI	
2	TABLE ACCESS FULL	CUSTOMERS
3	PARTITION RANGE ALL	
4	BITMAP CONVERSION TO ROWIDS	
5	BITMAP INDEX FAST FULL SCAN	SALES_CUST_BIX

1 - access("s"."cusT_ID"="C"."CUST_ID")

Tables are from SH demo schema.

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 17

DbProf.

com
Excerpt from CBO Trace
Cost-Based Subquery Unnesting
SU: Unnesting query blocks in query block SEL$1 (#1) that
are valid to unnest.
Subquery Unnesting on query block SEL$1
(#1)Su: Performing unnesting that does not require costing.
SU: Considering subquery unnest on query block SEL$1 (#1).
SU: Checking validity of unnesting subquery SEL$2 (#2)
SU: Passed validity checks.
SU: Transforming EXISTS subquery to a join.
@]5 www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 18

hroug

DbProf.
com

SU - unnesting aggregated sub-query

SELECT distinct p.prod_id, p.prod_name

FROM products p, sales s

WHERE p.prod_id = s.prod_id

AND s.quantity_sold < (SELECT AVG (quantity_sold)
FROM sales
WHERE prod_id = p.prod_id);

! 1

SELECT distinct p.prod_id, p.prod_name

FROM products p, sales s,
(SELECT AVG (quantity_sold) as avgqgnt, prod_id
FROM sales
GROUP BY prod _id) v

WHERE p.prod_id = s.prod_id

AND s.quantity_sold < v.avgqnt

AND v.prod_id = s.prod_id;

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 19

DbProf.
com

Execution Plan for Un-transformed Query

SELECT STATEMENT	
FILTER	
HASH JOIN	
TABLE ACCESS FULL	PRODUCTS
PARTITION RANGE ALL	
TABLE ACCESS FULL	SALES
SORT AGGREGATE	
PARTITION RANGE ALL	
TABLE ACCESS BY LOCAL INDEX ROWID	
BITMAP CONVERSION TO ROWIDS	
I	

BITMAP INDEX SINGLE VALUE

SALES

SALES_PROD_BIX

1 - fi]ter("S"."QUANTITY_SOLD"<)
2 - access("P"."PROD_ID"="S"."PROD_ID")
10 - access("PROD_ID"=:B1l)

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 20

DbProf.
com

Execution Plan for Transformed Query

Id	Operation	Name	Rows
O	SELECT STATEMENT		3615
1	HASH UNIQUE		3615
* 2	HASH JOIN		56104
3	TABLE ACCESS FULL	PRODUCTS	72
* 4	HASH JOIN		56104
5	VIEW		72
6	HASH GROUP BY		72
7	PARTITION RANGE ALL		918K
8	TABLE ACCESS FULL	SALES	918K
9	PARTITION RANGE ALL		918K
10	TABLE ACCESS FULL	SALES	918K

2 - access("P"."PROD_ID"="S"."PROD_ID")
4 - access("v"."PrROD_ID"="S"."PROD_ID")
filter("s"."QUANTITY_SOLD"<"V"."AVGQNT")

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 21

DbProf.

com
eally D |

What CBO Really Does is ...
SELECT DISTINCT P.PROD_ID ITEM_1,

P.PROD_NAME ITEM_2,

CASE WHEN S.QUANTITY_SOLD <

AVG(S.QUANTITY_SOLD) OVER (PARTITION BY S.PROD_ID)
THEN S.ROWID END VW_COL_3
FROM SH.SALES S,SH.PRODUCTS P
WHERE P.PROD_ID=S.PROD_ID
| Id | Operation | Name |
| O | SELECT STATEMENT | |
| 1 | HASH UNIQUE | I
* 2	VIEW	VW_WIF_1
3	WINDOW SORT	
* 4	HASH JOIN	
5	TABLE ACCESS FULL	PRODUCTS
6	PARTITION RANGE ALL]	
7	TABLE ACCESS FULL	SALES
Predicate Information (identified by operation id):
2 - filter("vw_coL_3" IS NOT NULL)
4 - access("P"."PROD_ID"="S"."PROD_ID")
G')Ib www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 22

hroug

DbProf.
com

QD15

hroug

FPD — Filter Push Down

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

23

DbProf.

com
select distinct c4
from
(select /*+ no_merge */ c4, count(*) cnt
from tngroup by c4) a
where|a.cnt > 100
—— +-——m
| Id | Operation | Name | Rows | Bytes | Cost | Time
—— 4-—mm e
O	SELECT STATEMENT				4	
1	VIEW		1	13	4	00:00:01
*2 I FILTER I		I I				
3	HASH GROUP BY		1	3	4	00:00:01
4	TABLE ACCESS FULL	T1	1000	3000	3	00:00:01
—— o
Predicate Information:
2 - filter(COUNT(*)>100)
« a.cnt> 100 is pushed inside subquery
@]5 www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 24

hroug

DbProf.
com

FPD — Filter Push Down (2)

e Excerpt from CBO trace

RASRANRANR AN AR A AN A IR AR AR AR AR A A L A A N AR A SR AN A3
D It Yt vl o Yl s Y Y Y Yl T Yt i i i r i r e Yt D e e v Y e Y Y v
EARRANRANR AN IR I A I A A S A A A L A A AR A W A S A A A A A i A A AR AW A WP AP AP 1N

FPD: Considering simple filter push (pre rewrite) in query block SEL$1 (#0)
FPD: Current where clause predicates "A"."CNT">100

try to generate transitive predicate from check constraints for query block
SEL$1 (#0)

finally: "A"."CNT">100

FPD: Following are pushed to having clause of query block SEL$2 (#0)
COUNT(*)>100

FPD: Considering simple filter push (pre rewrite) in query block SEL$2 (#0)
FPD: Current where clause predicates 7?7

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 25

DbProf.
com

QD15

hroug

View Merging

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

26

DbProf.
com

View Merging

 Views are created for several reasons
— Security

— Abstraction (factorize same work performed by many
qgueries)

— Describe business logic
 However, they are used in different contexts
— Filter on a view column
— Join to tables or other views
— Order by or group by on view column(s)
* View merging
— Allows optimizer to explore more plans, e.g, enabled
access paths or consider more join orders

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 27

DbProf.
com

View Merging

Simple view
— Select-Project-Join
— Merged automatically as it is always better.

Complex view

— Aggregation / group by, distinct, or outer-join
— Complex view merging was heuristic-based;
— It is cost-based in 10g

In the following examples, in-line views are used
to make it easy to see the view definition.

All optimizations related to views apply to both
inline views and user-defined views.

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 28

DbProf.
com

Select-Project-Join View Merging

SELECT tl.x, Vv.z

FROM tl1, t2, (SELECT t3.z, t4.m

FROM t3, t4
WHERE t3.k

WHERE t2.p = tl.p AND t2.m
SELECT tl.x, t3.z

FROM tl1, t2, t3, t4
WHERE t2.p = tl.p AND t2.m = t4.m AND t3.k = t4.k AND t4.q = 5;

t4.k AND t4.q = 5) v

vV.m;

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 29

CVM - complex view merging

DbProf.
com

SELECT el.last_name, el.salary, v.avg_salary
FROM employees el,
(SELECT department_id, avg(salary) avg_salary
FROM employees e2
GROUP BY department_id) v
WHERE el.department_id = v.department_id
AND el.salary > v.avg_salary;

: 1

SELECT el.last_name last_name,
el.salary salary, avg(e2.salary) avg_salary
FROM hr.employees el, hr.employees e2
WHERE el.department_id = e2.department_id
GROUP BY e2.department_id,el.rowid,el.salary,el.last_name
HAVING el.salary > avg(e2.salary)

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

30

DbProf.
com

QD15

hroug

PM - predicate move-around

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

31

DbProf.
com

PM - predicate move-around (1)

« Moves inexpensive predicates into view query blocks in
order to perform earlier filtering.

« Generates filter predicates based on
— transitivity or
— functional dependencies.

 Filter predicates are moved through SPJ, GROUP BY,
DISTINCT views and views with OLAP constructs

« Copies of filter predicates can be moved up, down, and
across query blocks.

« Enables new access paths and reduce the size of data that
IS processed later in more costly operations like joins or
aggregations.

 Itis performed automatically
COI15

hroug

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 32

DbProf.

com
PM - predicate move-around (2)
SELECT v1.kl, v2.q, maxl
FROM (SELECT tl.k AS k1, MAX (tl.a) AS maxl
FROM t1, t2
WHERE tl.k = 6 AND tl.z = t2.z
GROUP BY tl.k) ,
(SELECT tl.k AS k2\ t3.g AS q
FROM tl, t3
WHERE tl.y = t3.y AND t3.z > 4) V2
WHERE v1.kl = v2.k2 AND max1l 50;
SELECT v1l.x, v2.q, maxl
FROM (SELECT tl.k AS k1, max (tl. AS 1
FROM t1, t2
WHERE tl.k = 6 AND tl.z = t2.X AND tl.a > 50
GROUP BY tl.k) vi1,
(SELECT tl.k AS k2, t3.q AS q
FROM t1, t3
WHERE tl.y = t3.y AND t3.z > 4 AND tl.k = 6) v2
WHERE v1.kl = v2.k2;
%u]g www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 33

DbProf.
com

QD15

hroug

JPPD - join predicate push-down

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

34

DbProf.
com

JPPD - join predicate push-down (1)

« Many types of views can not be merged; e.g.,
views containing UNION ALL/UNION; anti-
/semi-joined views; some outer-joined views

* As an alternative, join predicates can be pushed
iInside unmerged views

* A pushed-down join predicate acts as a
correlating condition inside the view and opens
up new access paths e.g., index based nested-
loop join

* Decision to do JPPD is cost-based

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 35

DbProf.
com

JPPD - join predicate push-down (2)

SELECT tl.c, t2.X
FROM tl, t2, (SELECT t4.x, t3.y
FROM t4, t3
WHERE t3.p = t4.9 AND t4.k >
WHERE tl.c = t2.d AND tl.x = v.x(+) AND t2.d

! 1

4) v
= V.y(+);

SELECT tl.c, t2.x
FROM t1,
t2,
(SELECT t4.x, t3.y
FROM t4, t3
WHERE t3.p = t4.q AND t4.k > 4 AND tl.x = t4.x AND t2.d = t3.y) v
WHERE tl.c = t2.d;

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 36

DbProf.
com

QD15

hroug

JF — Join Factorization

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

37

DbProf.
com

JF — Join Factorization

* Purpose:

— Branches of UNION / UNION ALL that join a common
table are combined to reduce the number of accesses
to this common table.

« If this transformation is applied then the
VW _JF* in the execution plan is a result of the
join factorization.

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 38

JF — Join Factorization

DbProf.
com

(SELECT Al.Cl1l C1, A2.C2 C2
FROM JOC.Al Al, JOC.A2 A2
WHERE Al.Cl = A2.C3 AND Al.Cl > 1)
UNION ALL
(SELECT Al.C1l C1, A2.C2 C2
FROM JOC.Al Al, JOC.A2 A2
WHERE Al.Cl = A2.C3 AND Al.C1l > 20)

! 1

SELECT VW_JF_SEL$906F71F0.C1 C1, VW_JF_SEL$906F71F0.C2 C2
FROM (SELECT VW_JF_SET$48F2D741.1ITEM_2 Cl, A2.C2 C2
FROM ((SELECT Al.Cl ITEM_1, Al.Cl ITEM_2)
FROM JOC.Al1l Al
WHERE Al.C1l > 1)
UNION ALL
(SELECT Al.C1 ITEM_1, Al.Cl ITEM_2
FROM JOC.Al Al

WHERE Al.C1l > 20)) VW_JF_SET$48F2D741,//
JOC.A2 A2

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

union all
operation

WHERE VW_JF_SET$48F2D741.ITEM_1 = A2.C3) VW_JF_SEL$906F71F0

39

DbProf.

com

(SELECT Al.C1l Cl1l, A2.C2 C2

FROM JOC.A1l Al, JOC.A2 A2

WHERE Al.Cl1l = A2.C3 AND Al.Cl > 1)

UNION ALL
(SELECT Al.C1 C1, A2.C2 C2

FROM JOC.Al1l Al, JOC.A2 A2

WHERE Al.Cl1l = A2.C3 AND Al.Cl > 20)

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time		
0	SELECT STATEMENT		10M	300M	7568 (11)	00:00:22		
[* 1	HASH JOIN		10Mm	300M	7568 (11)	00:00:22		
2	VIEW		VW_JF_SET$48F2D741		2	52	5008 (8)	00:00:15
3	UNION-ALL	I I I I I						
[* 4	TABLE ACCESS FULL	Al	1	2	2504 (8)] 00:00:08			
[* 5	TABLE ACCESS FULL	Al	1	2	2504 (8)] 00:00:08			
6	TABLE ACCESS FULL	A2	5242K	20mM	2377 (8	00:00:07		
Predicate Information (identified by operation id):

1 - access("ITEM_1"="A2"."C3")

4 - filter("Al"."C1l">1)

5 - filter("Al"."C1">20)

m]5 www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 40

hroug

DbProf.
com

QD15

hroug

JE - Join Elimination

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

41

DbProf.
com

JE - Join Elimination (1)

o Eliminate unnecessary joins if there are constraints defined on join
columns. If join has no impact on query results it can be eliminated.

— e.departmens_id is foreign key and joined to primary key d.department_id

e Eliminate unnecessary outer joins — doesn’t even require primary key —
foreign key relationship to be defined.

SQL> select e.first_name, e.last_name, e.salary
from employees e,
departments d
where e.department_id = d.department_1id;

—————————————————————————————————————— e
| Id | Operation | Name | Rows | Bytes | Cost | Time |
—————————————————————————————————————— e ittt b bbbt &
| O | SELECT STATEMENT | | | | 3 | I
| 1 | TABLE ACCESS FULL | EMPLOYEES| 106 | 2332 | 3 | 00:00:01 |
—————————————————————————————————————— e ittt b bbbt &

Predicate Information:

1 - filter("E"."DEPARTMENT_ID" IS NOT NULL)

%u]g www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 42

DbProf.
com

JE - Join Elimination (2)

e Excerpt from CBO trace

JE: Considering Join Elimination on query block SEL$1 (#0)
Jo1n E11m1nat1on (JE)

JE: cfro: EMPLOYEES oan 70291 col#:11 dfro:DEPARTMENTS
dcol#:11

Query b1ock (26649C50) before join elimination:

SQL: *¥¥*%*%%* YUNPARSED QUERY IS ¥ %%

SELECT "E"."FIRST_NAME" "FIRST_NAME",' , '"E" . "LAST_NAME"
"LAST_NAME" , "E"."SALARY" "SALARY" FROM "HR"."EMPLOYEES"

"E","HR"."DEPARTMENTS" "D" WHERE
"E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID"

JE: eliminate table: DEPARTMENTS

Registered gb: SEL$F7859CDE 0x26649c50 (JOIN REMOVED FROM QUERY
BLOCK SEL$1; SEL$1; "D"@"SEL$1"™)

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 43

DbProf.
com

JE - Join Elimination (3)

* Purpose of join elimination
— Usually people don’t write such “stupid” statements directly

— Such situations are very common when a view is used which
contains a join and only a subset of columns is used and therefor
a join operation is really not required at all.

« Known Limitations (source: Optimizer group blog)

— Multi-column primary key-foreign key constraints are not
supported.

— Referring to the join key elsewhere in the query will prevent table
elimination. For an inner join, the join keys on each side of the
join are equivalent, but if the query contains other references to
the join key from the table that could otherwise be eliminated,
this prevents elimination. A workaround is to rewrite the query to
refer to the join key from the other table.

hrou]g www.dbprof.com - © 2010 JoZe Senegacnik # - Private Researcher 44

DbProf.
com

QD15

hroug

SJC — Set Join Conversion

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

45

DbProf.
com

SJC - Set-doin Conversion

« Conversion of a set operator to a join operator.
« Disabled by default in 11gR2

« To enable it there are three options:

- alter session set "_convert_set_to_join'=true;

- /*+ OPT_PARAM('_convert_set_to_join‘, "true') */

- /*+ SET_TO_JOIN */

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 46

DbProf.
com

No SJC By Default

select c4 from tl minus select c2 from t2 ;

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
O	SELECT STATEMENT		1000	6000	8 (63)	00:00:01
1	MINUS			I I		
2	SORT UNIQUE		1000	3000	4 (25)] 00:00:01	
3	TABLE ACCESS FULL	T1	1000	3000	3 (0)	00:00:01
4	SORT UNIQUE		1000	3000	4 (25)	00:00:01
5	TABLE ACCESS FULL	T2	1000	3000	3 (0)	00:00:01

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 47

DbProf.
com

oJC with OPT_PARAM hint

select /*+ opt_param('_convert_set_to_join', 'true') */ x.c4
from tl x

minus

select y.c4

from tl y;

O	SELECT STATEMENT			8 (25)	00:00:01	
1	HASH UNIQUE			8 (25)	00:00:01	
* 2	HASH JOIN ANTI		10	60	7 (15)] 00:00:01	
3	TABLE ACCESS FULL	T1	1000	3000	3 (0)	00:00:01
4	TABLE ACCESS FULL	T1	1000	3000	3 (0)	00:00:01

2 - access(SYS_OP_MAP_NONNULL("X"."C4")=SYS_OP_MAP_NONNULL(C"Y"."C4"))

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 48

DbProf.

com
select /*+ SET_TO_JOIN */ Xx.c4
from tl x
minus
select y.c4
from tl y;
Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
O	SELECT STATEMENT		3	18	8 (25)] 00:00:01	
1	HASH UNIQUE		3	18	8 (25)	00:00:01
* 2	HASH JOIN ANTI		10	60	7 (15)] 00:00:01	
3	TABLE ACCESS FULL	T1	1000	3000	3 (0)	00:00:01
4	TABLE ACCESS FULL	T1	1000	3000	3 (0)	00:00:01
Predicate Information (identified by operation id)
2 - access(SYS_OP_MAP_NONNULL("X"."Cc4")=SYS_OP_MAP_NONNULL("Y"."C4'"))
%u]g www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 49

DbProf.
com

oJC in CBO Trace

QD15

hroug

e Excerpt from CBO trace

SJC: Considering set-join conversion in query block SET$1 (#0)
Set-Join Conversion (SJC)

SJC: Checking validity of SJC on query block SET$1 (#0)

SJC: Passed validity checks.

SJC: SJIC: Applying SIC on query block SET$1 (#0)

Registered qb: SEL$09AAA538 0x99f85c60 (SET QUERY BLOCK SET$1; SET$1)

signature (): qb_name=SEL$09AAA538 nbfros=2 fl1g=0
fro(0): flg=0 objn=247624 hint_alias="X"@"SEL$1"
fro(1): f1g=0 objn=247624 hint_alias="Y"@"SEL$2"

SJC: performed

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 50

DbProf.
com

QD15

hroug

OBYE - Order BY Elimination

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

51

DbProf.
com

OBYE - order by elimination (1)

« OBYE operation eliminates unnecessary order by opertion
from the SQL statement

select /*+ gb_name(main) */| count(*) |from (
select /*+ gb_name(gl) */£p.prod_name
from products p
order by p.prod_name

);

Id	Operation	Name	Rows
0	SELECT STATEMENT		1
1	SORT AGGREGATE		1
2	BITMAP CONVERSION COUNT		72
3	BITMAP INDEX FAST FULL SCAN	PRODUCTS_PROD_STATUS_BIX	

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 52

DbProf.

hroug

com
 From CBO Trace in 11g; 10gR2 has similar output
order-by elimination (OBYE)
OBYE: Removing order by from query block Q1 (#0) (order not used)
Regiﬁferﬁg qb: SEL$7AB500E1 Ox464f6080 (ORDER BY REMOVED FROM QUERY BLOCK
Ql; Q
QUERY BLOCK SIGNATURE
signature (): qb_name=SEL$7AB500E1 nbfros=1 fl1g=0
fro(0): f1g=0 objn=70488 hint_alias="P"@"Ql"
OBYE: OBYE performed.
@]5 www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 53

DbProf.
com

CNT - count(col) to count(*) transformation

QD15

hroug

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

54

DbProf.
com

CNT - count(col) to count(*) transformation

SQL> create table tl (cl number|not nu11j;
SQL> select count(cl) from t1;

CNT: Considering count(col) to count(*) on query block
SEL$1 (#0)

ala
Count(co to Count(*® CNT
ala ale ala ala ala Ala e Wla Wla Wle Ale Ala ala ala Ale Ala Ala ala ATa e Ala Ala Wla WTe AT
ZANR AN AN A A A N AR AR A A A A A A R AR A A i A i A A A A AR A AN

CNT: converting COUNT(C1l) to COUNT(*).
CNT: COUNT() to COUNT(*) done.

« All rows should have a value and therefore Oracle can
simply count the number of rows

« There is no need to actually retrieve the column value.

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 55

DbProf.
com

CNT - count(col) to count(*) transformation

QD15

hroug

SQL> alter table tl add (c2 varchar2(10)); /* nullable col */

SQL> select count(c2) from tl;

From CBO trace:
CNT: Cconsidering count(col) to count(*) on query block SEL$1 (#0)
Count(col) to Count(*) (CNT)

CNT: COUNT() to COUNT(*) not done.
query block SEL$1 (#0) unchanged

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 56

CBO’s Column Retrieval Cost

DbProf.
com

« Oracle stores columns in variable length format

« Eachrow is parsed in order to retrieve one or several
columns.

« Each parsed column introduces cost of 20 CPU cycles
regardless if it will be extracted or not.

Length

c1 fc

c3 Jca) s s |cr

Cost 20 40 60 80 100 120

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

140

57

DbProf.
com

CNT - count(col) to count(*) transformation

« Comparing the calculated cost from CBO trace file

—Without CNT Transformation

Cost: 34.4695 Degree: 1 Card: 56229.0000 Bytes: 224916
Resc: 34.4695 Resc_io: 34.0000 Resc_cpu: 10399260

—With CNT transformation the CPU cost is reduced

Cost: 34.4187 Degree: 1 CcCard: 56229.0000 Bytes: O
Resc: 34.4187 Resc_io: 34.0000 Resc_cpu: 9274680

* The cost is reduced for 20 CPU cycles per row — Oracle
has less work to do — accesses only the row directory and

the row header in database block and doesn’t need to
parse the row data.

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 58

DbProf.
com

QD15

hroug

Conclusions

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher

59

DbProf.
com

Conclusions

1. Help CBO by defining all possible constraints. CBO uses them
extensively during the SQL statement transformations. Telling more
“truth” to CBO usually helps.

2. Feed the CBO with accurate statistics, only for complex expressions
use dynamic sampling.

3. Misestimated cardinality in Cost Based Transformation leads to sub-
optimal plan.

4. Use transformation techniqgues when rewriting the statement to obtain
optimal plan. One can even use NO_QUERY_TRANSFORMATION hint
to disable all transformations.

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 60

DbProf.
com

References

QD15

hroug

http://blogs.oracle.com/optimizer or former http://optimizermaqgic.blogspot.com/

For more detailed study:

Enhanced Subquery Optimizations in Oracle, VLDB’09,
htto://www.vidb. orq/pv/db/Z/v/d 09-423.pdf

Patent registration: Join Factorization of UNION/UNION ALL Queries,

http://www.freepatentsonline.com/7644062.pdf

Cost-Based Query Transformation in Oracle, VLDB’06, September 2006,

Seoul, Korea, niip-/delivery.acm.org/10.1145/1170000/1164215/01026-
ahmed.pdf?key1=1164215&key2=7529733711&coll=&dI~ACM&CFID=15151515& CFTOKEN=6184618

Query Optimization in Oracle Database10g Release 2, An Oracle White
Paper, June 2005,

http..//www.oracle.com/technology/products/bi/db/10q/pdf/twp general query optimization 10gr2 0605.pdf

Mohamed Zait, Oracle10g SQL Optimization, Trivadis CBO days, June
2006, Zurich, Switzerland

Jonathan Lewis, Cost Based Oracle, Apress

www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 61

DbProf.
com

Thank you for your interest!

Q&A

QD15

hroug www.dbprof.com - © 2010 Joze Senegacnik # - Private Researcher 62

